
© 2010 Bennett, McRobb and Farmer 1

What Is Object-Orientation?

Based on Chapter 4 of Bennett,
McRobb and Farmer:

Object Oriented Systems Analysis and
Design Using UML, (4th Edition),

McGraw Hill, 2010.

2© 2010 Bennett, McRobb and Farmer

In This Lecture You Will Learn:

• The fundamental concepts of object-
orientation, including:
– Objects and classes

– Generalization, specialization and inheritance

– Information hiding and message passing

• The justifications for an object-oriented
approach

3© 2010 Bennett, McRobb and Farmer

Objects

An object is:

“an abstraction of something in a problem
domain, reflecting the capabilities of the
system to
– keep information about it,

– interact with it,

– or both.”

Coad and Yourdon (1990)

4© 2010 Bennett, McRobb and Farmer

Objects

“Objects have state, behaviour and
identity.”

Booch (1994)

• State: the condition of an object at any
moment, affecting how it can behave

• Behaviour: what an object can do, how it
can respond to events and stimuli

• Identity: each object is unique

5© 2010 Bennett, McRobb and Farmer

Examples of Objects

Object

A person. ‘Hussain Pervez.’ Speak, walk, read.
Studying, resting,
qualified.

A shirt.
My favourite button
white denim shirt.

Shrink, stain, rip. Pressed, dirty,
worn.

A sale. Sale no #0015,
18/05/05.

Earn loyalty points. Invoiced,
cancelled.

Identity Behaviour State

A bottle of
ketchup.

This bottle of
ketchup.

Spill in transit. Unsold, opened,
empty.

6© 2010 Bennett, McRobb and Farmer

Class and Instance

• All objects are instances of some class

• A Class is a description of a set of
objects with similar:
– features (attributes, operations, links);

– semantics;

– constraints (e.g. when and whether an
object can be instantiated).

OMG (2009)

7© 2010 Bennett, McRobb and Farmer

Class and Instance

• An object is an instance of some class
• So, instance = object

– but also carries connotations of the class to
which the object belongs

• Instances of a class are similar in their:
– Structure: what they know, what information

they hold, what links they have to other
objects

– Behaviour: what they can do

8© 2010 Bennett, McRobb and Farmer

Generalization and
Specialization

• Classification is hierarchic in nature

• For example, a person may be an
employee, a customer, a supplier of a
service

• An employee may be paid monthly, weekly
or hourly

• An hourly paid employee may be a driver,
a cleaner, a sales assistant

9© 2010 Bennett, McRobb and Farmer

Specialization Hierarchy

Person

Employee Customer Supplier

monthly
paid

weekly
paid

hourly
paid

Driver Cleaner Sales
assistant

More general
(superclasses)

More specialized
(subclasses)

10© 2010 Bennett, McRobb and Farmer

Generalization and
Specialization

• More general bits of description are
abstracted out from specialized classes:

SystemsAnalyst
name
employee-no
startDate
monthlySalary
grade

Driver

name
employee-no
startDate
standardHourlyRate
overtimeRate
licenceType

11© 2010 Bennett, McRobb and Farmer

General (superclass)

Specialized (subclasses)

SystemsAnalyst
monthlySalary
grade

Driver

standardHourlyRate
overtimeRate
licenceType

Employee

name
employee-no
startDate

12© 2010 Bennett, McRobb and Farmer

Inheritance

• The whole description of a superclass
applies to all its subclasses, including:
– Information structure (including associations)

– Behaviour

• Often known loosely as inheritance

• (But actually inheritance is how an O-O
programming language implements
generalization / specialization)

13© 2010 Bennett, McRobb and Farmer

All characteristics of the
superclass are inherited
by its subclasses

SystemsAnalyst
monthlySalary
grade

Driver

standardHourlyRate
overtimeRate
licenceType

Employee

name
employee-no
startDate

14© 2010 Bennett, McRobb and Farmer

:SystemsAnalyst
name
employee-no
startDate
monthlySalary
grade

:Driver

name
employee-no
startDate
standardHourlyRate
overtimeRate
licenceType

Instances of each
subclass include the
characteristics of the
superclass (but not
usually shown like
this on diagrams)

15© 2010 Bennett, McRobb and Farmer

Message-passing

• Several objects may collaborate to fulfil
each system action

• “Record CD sale” could involve:
– A CD stock item object

– A sales transaction object

– A sales assistant object

• These objects communicate by sending
each other messages

16© 2010 Bennett, McRobb and Farmer

Message-passing and
Encapsulation

Message from another object
requests a service.

Operation signature is an
interface through which an

operation can be called.

Operations are located
within an object.

Data used by an
operation is located in

the object too

‘Layers of an onion’
model of an object:

An outer layer of
operation signatures…

…gives access to middle
layer of operations…

…which access an
inner core of data

17© 2010 Bennett, McRobb and Farmer

Information Hiding: a strong
design principle

Message from another object
requests a service.

Operations can only be
called by message with

valid operation signature.

Only object’s own operations
can access its data.

Representation of data
is hidden inside object

‘Layers of an onion’
model of an object:

Only the outer layer is
visible to other objects…

…which are the only
way to access the

hidden data

…and it is the only way to
access operations…

18© 2010 Bennett, McRobb and Farmer

Polymorphism

• Polymorphism allows one message to be
sent to objects of different classes

• Sending object need not know what kind
of object will receive the message

• Each receiving object knows how to
respond appropriately

• For example, a ‘resize’ operation in a
graphics package

19© 2010 Bennett, McRobb and Farmer

Polymorphism in Resize
Operations

Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts()
addNewAdvert()

<<entity>>

Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts()
addNewAdvert()

<<entity>>

20© 2010 Bennett, McRobb and Farmer

Advantages of O-O

• Can save effort
– Reuse of generalized components cuts work,

cost and time

• Can improve software quality
– Encapsulation increases modularity

– Sub-systems less coupled to each other

– Better translations between analysis and
design models and working code

21© 2010 Bennett, McRobb and Farmer

Summary

In this lecture you have learned about:

• The fundamental concepts of O-O
– Object, class, instance

– Generalization and specialization

– Message-passing and polymorphism

• Some of the advantages and justifications
of O-O

22© 2010 Bennett, McRobb and Farmer

References

• Coad and Yourdon (1990)

• Booch (1994)

• OMG (2009)
(For full bibliographic details, see Bennett,

McRobb and Farmer)

